Resizing a river: using experimental management to develop a downscaled environmental flow regime for the Lower Bridge River or

Does more water mean more fish?

Mike Bradford
Paul Higgins
Josh Korman

Alternative Perspectives on Flow Management:

Natural Flow Paradigm

- "Nature knows best"
- Flows for ecosystem health
- The magnitude of the impact is related to the "degree of hydrologic alteration"
- More water = more fish

Designer Flows

- Flows for target species or management goals
- River resizing
- More water ≠ more fish

Experimental Management as a management paradigm

- Substantial uncertainty in instream flow methodologies, most are not tested
- Variable and unpredictable responses of the ecosystem to flow changes
- Instead of flow modelling, empirically determine response of the river to flow by testing a range of flow regimes

Bridge River, southwestern BC

Present location of Terzaghi Dam

MAD $\sim 100 \text{ m}^3\text{s}$

Fish production in tributaries

Terzaghi Dam, ca 1958

100% diversion for power

Mid 1990s: the reintroduction of flow from Terzaghi Dam

- Modification of the dam
- How much water to release?
- Water is worth 2-3 M\$ per annualized m³/s for power generation
- At the time, juvenile salmon were the primary environmental performance measure

Standard physical habitat simulation in Reach 3 predicted that a large flow release would reduce juvenile fish habitat

This is counter to standard setting approaches used by agencies

More water ≠ more fish!

Prediction: Optimal flows at 1-3 cms (1-3% MAD)

A flow experiment was recommended to arbitrate between competing hypotheses

H₁: "More flow produces more fish"

Fish production is direct function of the relationship between wetted area and flow

H₂: "More flow will not produce more fish"

Habitat quality changes with flow, and after some threshold point this causes a net reduction in fish production

Recommended planned flow treatments:

Seasonal flow variation "semi-natural flow"

4-year treatment blocks

Monitoring Design

- Pre-release: 1996-1999
- Release year: 2000
- Post release: 2001-2008
- Basic unit- 3 pass backpack E/f
- 12-18 sites in each of 3 reaches
- Additional indicators:
 - Fish condition
 - Lower trophic levels
 - Physical and chemical monitoring

Hierarchical model for analyzing electrofishing data

Age-0 rainbow trout

Median abundance and 95% credible intervals of abundance by year and reach.

Dashed horizontal lines show the average abundance pre- and post-flow release

Age-1 rainbow trout

Median abundance and 95% credible intervals of abundance by year and reach.

Dashed horizontal lines show the average abundance pre- and post-flow release

Age-0 Coho salmon

Posterior distributions of abundance of pre- and post-flow release

Age-0 chinook salmon

Median abundance and 95% credible intervals of abundance by year and reach.

Is the chinook salmon decline caused by the impact of the altered thermal regime on abundance?

0+ Chinook abundance: decline due to change in life history caused by increased larval development rates

Summary of change over all 4 fish taxa

Little change

3x increase

Rewetted

Is habitat in the Bridge River too complex to model or predict?

What have we learned?

1. Biology

- Prior to the flow release the Bridge River was a productive salmon river
- Increasing the flow to the wetted reach had no effect on salmon abundance- this was contrary to predictions based on habitat and hydraulic modelling
- Each fish taxa responded differently
- Possible to "resize the river"- a smaller flow release would likely provide similar benefits

What have we learned, con't

- 2. Resource management
 - The river is not a "scientist's sandbox"
 - We did not capture the important values to stakeholders

Esthetic and cultural values strongly support

higher flows

Is monitoring and adaptive management an efficient method of resource management decision making?

- Long trials are difficult to sustain in today's world (\$\$, time, shifting social environment)
- Key questions may be less relevant by the end
- Lower requirement for accurate biological information in complex decision environments where many factors are in play.
- Value of information analysis at local and regional scales

See you in 2016 for the final chapter!

