Hydraulics Component Overview of the BC Hydro Fish Entrainment Study

PROGRESS AND ONGOING ANALYSIS OF HUGH KEENLEYSIDE DAM FIELD DATA

C. Beth Robertson University of Alberta

Overview

- Introduction and Objectives
- Locations of study
 - Completed and upcoming studies
- HLK field measurements
 - Temperature measurement and analysis

Introduction

• What is fish entrainment?

- Fish pass through dam
 - High velocity near intake
 - Selective withdrawal increased velocity

Objectives

- Overall: combine hydraulic and biological research to develop general methods for assessing fish entrainment risk
- Hydraulic: velocity field and thermal stratification
 CFD modelling, field measurements for model validation

Locations

- Four reservoirs
 - o Columbia River:
 - × Mica Dam
 - × Revelstoke Dam
 - × Hugh Keenleyside Dam
 - o Bull River:
 - x Aberfeldie Dam

Mica Dam

Revelstoke Dam

Aberfeldie Dam

Hugh Keenleyside Dam

HLK Field Work

- Velocity
 - ADCP measurements
- Temperature
 - Thermistor chain measurements

HLK Field Work

Temperature Measurements

• Daily fluctuations – temperature vs. time

Temperature Measurements

• Daily fluctuations – depth vs. temperature

Temperature Measurements Mean daily water temperature 22.0 Depth 1.20 20.0 ····· 2.27 ··· 3.36 ····· 4.44 18.0 5.54 6.63 7.73 Temperature, °C 8.81 16.0 9.89 10.99 12.08 14.0 13.17 ·· 14.25 15.33 12.0 16.41 17.48 18.55 10.0 19.59 21.71 23.83 8.0 16/07/10 21/07/10 26/07/10 31/07/10 05/08/10 10/08/10 15/08/10 20/08/10 Time, day

Field Conditions

HLK and ALH mean daily flow

Reservoir Dynamics

- Seiche effects
 - Wind driven fluctuations
 - Hydropower operation change driven fluctuations
- Stratification during summer months
 - o Causes internal seiche

Spectral Analysis

- Measure of fluctuations
- Determines dominant frequency of a time series

$$T = 1/f = 20$$

20 × $(\pi/10) = 2\pi$

Spectral Analysis

- Developed thermocline depth time series
- 35 days of temperature data

Spectral Analysis

Dominant oscillation frequencies and periods

N	Frequency (/hr)	Period	
		(hours)	(days)
2000	0.042	23.8	-
	0.07:	13.9	-
	0.18	5.6	-
5000	0.012	83.3	3.5
	0.04	21.9	-

Theoretical Calculations

- Thermocline depth oscillation
- Numerous assumptions
 - Rectangular cross section
 - Average epiliminion/hypoliminion depths and temperatures
 - o Reservoir length

Theoretical Calculations

Critical Discharge

- Discharge required to overcome buoyancy forces from thermal gradient
- Calculations with idealized, two layer reservoir
- Point sink solution (Craya)
- Spillway critical discharge = 244 m³/s
- Field work spillway discharge = 65 m³/s

Critical Discharge

Thank You

• Questions?