Decision Tools in Support of Fish Passage

Rob McLaughlin Department of Integrative Biology University of Guelph Guelph, ON

Key Points

- Managers are facing greater socio-ecological complexity
- Fish passage decisions need to be made
- Structured decision making can help ensure passage decisions are sound

A Changing Management Landscape

Past/Present	Present/Future	
single species systems	multi-species ecosystems	
command-control - receptive users	participatory management - diverse, sophisticated users	
opaque process	open and transparent	
uncertainty endured	uncertainty embraced	
"muddling through?"	adaptive management	

Structured Decision Making

People:

Decision/policy makers, stakeholders, scientists and engineers

Tools:

Decision/real-options analyses, utility functions, Bayesian belief networks, value of information, simulations, databases/software

Sea Lamprey Control in the Great Lakes

Sea Lamprey Barriers

Permanent

Seasonal

Case 1: Barrier/Fishway Options

Decision Analysis

- 1) Specify management objectives
- 2) Specify management options
- 3) Identify uncertainties
- 4) Assign probabilities to uncertainties
- 5) Conduct simulations linking 1-4
- 6) Create a decision tree
- 7) Rank the management options
- 8) Conduct sensitivity analyses

Decision Tree

Ranking Blocking/Passage Options

	Decision coefficients			
option	1.0:0	0.8:0.2	0.5:0.5	0.2:0.8
PB(NF)	1	3	4	4
PB(WF)	3	2		2
SB(NF)	2		2	3
SB(WF)	4	4	3	1

Uncertainty With Seasonal Barriers

Proportional reduction in sea lamprey production

Velez et al. 2011. Biol Cons 144:1068

Case 2: Dam Removal

Dam Removal: Black Sturgeon River

Trade-offs: Abundances

Uncertainty: Fish Passage

Limit on age 6+ female walleye passed per year

Uncertainty: Fish Passage

Uncertainty: Spawning Habitat Limiting? Yes.

Uncertainty: Spawning Habitat Limiting? No.

Key Points

- Managers are facing greater socio-ecological complexity
- Fish passage decisions need to be made
- Structured decision making can help ensure passage decisions are sound

Acknowledgements

Eric Smyth, ECOFISH Research, Vancouver, ON Bill Harford, University of Miami, FL Mike Jones,, Michigan State University, East Lansing, MI Marten Koops, Fisheries and Oceans Canada, Burlington, ON Tom Pratt, Fisheries and Oceans Canada, Sault Ste Marie ON Luis Antonio Velez-Espino, Fisheries and Oceans Canada, Nanaimo, BC

Great Lakes Fishery Commission Fisheries and Oceans Canada, Sea Lamprey Control US Fish and Wildlife Service Michigan Department of Natural Resources Ohio Department of Natural Resources Ontario Ministry of Natural Resources, Upper Great Lakes Management Unit Wisconsin Department of Natural Resources