Comparative analysis of sampling methods to develop habitat-use models of fish productivity in the littoral zone of reservoirs

N.A. Satre, G. Bourque and D. Boisclair

Nathan Satre Département de sciences biologiques Université de Montréal

3rd Annual HydroNet Symposium Montréal, Québec April 9th, 2013

eries and Oceans

Context and rationale:

 Ecosystems are comprised of different habitat types (mesohabitats) that play different roles for fish.

Brind'Amour and Boisclair (2006)

Context and rationale:

- In addition to **local and lateral habitat variables**, the **spatial context** of these habitat types may also affect fish.
 - distance to tributaries
 - distance to main channel
 - exposure to fetch etc.

Brind'Amour and Boisclair (2006)

Context and rationale:

- Like lakes, reservoirs also have different habitat types, but the proportion is subject to changing water levels.
- Managers may need models in which the spatial context and proportion of habitat types are explicitly considered.
- Given a habitat type and proportion along with fish-use data, we can develop models to estimate and predict fish production.

Knowing the value of habitat, we can spatially manage (or develop) reservoirs as quality fisheries.

Specific objectives:

- Identify what sampling method or combinations of methods may be best to estimate/predict metrics of production.
- Assess the relative roles of local, lateral, and contextual variables on metrics of production.

Specific hypotheses:

- Active methods (seining, and boat electrofishing) will allow us to develop mesoscale models with higher explanatory power than passive methods (gill netting).
- Local and contextual environmental conditions will play a similar role in explaining metrics of production (Brind'Amour and Boisclair 2006).

Study Site:

- Lac du Bonnet, Manitoba
 - 7.7 m mean / 25.2 m max depths
 - Reservoir area: 115 km²

Methodology:

- 43 + sites established
- Site requirements:
 - 200 homogeneous meters in length
 - Meet depth constraints of littoral zone (0-3 m)
 - Exclude cottages, islands, and drastic slopes (≥10%)
- Site placement based on feasibility, requirements, contextual habitat variables.

Sampling Methods:

- Three sampling methods were selected based on their performance in the system and based on a review of literature.
 - Seining
 - Gillnetting
 - Electrofishing

Seining:

- Active method
- 35 m x 1.5 3 m, ½ in mesh
- Developed unique / functional method without beaching the seine.
- Seine hauls ranged in depths between
 0.5 1.1 m (min) to 1.5 3 m (max).
- Mean sampling area- 160 m²

Gill Netting:

- Passive method
- Used 5/8 in, 1 in, 2 in, 3 in, 4¼ in mesh
- 4 nets each 20 m in length
- Nets set at 45° between the 2 and 3 m isobaths ± 0.5 m
- Distance of 20 m ± 5 m between nets
- Mean fishing time- 1h33
- Mean sampling area- 1,120m² (Estimated)

Min. estimate of Gill net sampling area $(60+20) \times 14 \text{ m} = 1,120 \text{m}^2$.

Electrofishing:

- Active method
- Used DFO electrofishing boat (Smith-Root SR20 w/5.0 GPP electrofisher).
- Shocked a 100 m transect in waters ranging from about 1-1.5 m median depth.
- Mean shocking seconds- 220 (3 min 40 sec)
- Mean sampling area- 500 m² (Estimated)

Coarse estimate of Electrofishing sampling area 100 m (transect) x 5 m (boat width & shock range)= 500 m^2

Habitat Sampling:

- Mapped the 1, 2 and 3 m isobaths and assigned percentages of the site as a whole
- Used a 1/4 m² quadrat to measure substrate and macrophyte cover 10x over the entire site
- Location of these measurements was dependant on the percent composition of depth zones over the site

0-1 m depth	70%	7 samples
1-2 m depth	20%	2 samples
2-3 m depth	10%	1 sample

 Assessment of lateral and contextual variables can be conducted offsite

What we've accomplished in 2012!

- Daytime sampling of Lac du Bonnet was conducted:
 - 43 sites using all three sampling gears (green)
 - 5 sites using two gears (orange)
 - 2 sites using one gear (pink)
 - Total of 50 sites sampled

What we collected in 2012!

- 27 fish species
- 28,989 individuals!
- 360.14 kg of fish

CPUE - Abundance

CPUE - Abundance >15cm

Substrate cover

Habitat variables

Map of habitat types

Longitude (degrees)

Looking Ahead

- Repeat sampling at night in 2013
 - Using seine and electrofishing as our main gears.
- Develop and compare habitat-use models using each gear's data
- Compute offsite, lateral and contextual variables (Objective 2)
- Compare local, lateral and contextual habitat variables (Objective 2)

Questions?

2012 HydroNet Reservoir Team (Wheeland, 2012)

AND THE R. O.

Fisheries and Oceans Université Canada de Montréal

