
APRIL 9, 2013

Challenges and Solutions to Sustainable Hydropower in Canada

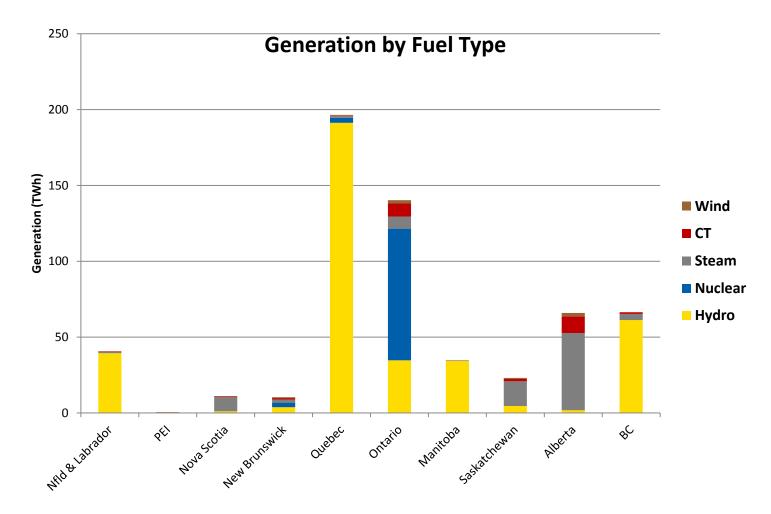
energy everywhere.

HYDRO CONTEXT

Generation Percentages

WORLD CONTEXT

If we reduced the world's population to a representative 100 people:


- 57 Asian, 21 European, 9 African, 8 North American, 5 South American
- 6 would control >50% of wealth, 5 in USA
- 1 would have been to college
- 24 would have no electricity, 71 with no access to the internet
- 80 would live in substandard housing, 39 earning <\$2/day

By contrast:

- Canada is 5th in primary energy production
- Canada is 7th in primary energy consumption
- Canada is 3rd in hydroelectric generation

CANADA'S HYDRO

CANADA'S HYDRO DIMENSIONS

Variability includes:

- Approximately 70% of the stations are less than 50 MW but more than 35 stations are larger than 500 MW
- Some provinces have many small stations (NS, Quebec, Ont., N & L, BC) and some have several larger stations (Que, Ont, Man., BC)
- Stations can be used for baseload, peaking, export, load following, support for wind, can be run seasonally, or for flood control, ice control and to support fish migration
- Some provinces have mostly coastal stations (dealing with migratory species) while others are more freshwater environments

FISH SPECIES

There is variability in the focus of different provinces on different fish species:

	Main Fish Species By Province								
	BC	Alta	Sask	MB	Ont	Que	NB	NS	NL
Kokanee	•			•					
Sturgeon	•	•	•	•	•				
Salmon	•				•	•	•	•	•
Trout	•	•	•	•	•	•	•	•	•
Pike	•	•	•	•	•	•			•
Walleye	•	•	•	•	•	•			
Whitefish	•	•	•	•	•	•	•	•	•
Smallmouth Bass			•	•	•	•	•	•	
Largemouth Bass			•	•	•	•			
Arctic Char		•		•			•		•
Burbot		•	•	•	•	•			
Muskellunge					•	•	•		
Alewife					•	•	•	•	
American Eel					•	•	•	•	

PAST HYDRO DRIVERS

Hydro Projects were originally built to address a growing need for electricity to fuel the industrialization of the country. Drivers for such development included:

- Electrification of rural or more remote areas of Canada
- Many direct links to industry with companies themselves developing projects to support pulp and paper, mining, smelting, and manufacturing
- Support for the World War 2 power needs
- Jobs and economic development construction was labor intensive
- Flood control and ice control
- Use of available, renewable natural resources

New Constraints & Challenges

CONSTRAINTS

Limited ability to change Need more operating flexibility Need to offset air emissions Need to support renewables

CHALLENGES

First Nations rights and title Competing Watershed Uses Environmental Requirements Species at Risk Archaeology and Cultural Resources Changing climate conditions

SCIENCE SOLUTIONS

ABILITY / PERMISSION TO OPERATE

PROCESS / SOCIAL SOLUTIONS

FIRST NATIONS

CHALLENGES

- Court Determined Rights and Title
- Multiple First Nations in one area
- Land or Equity Demands
- Lengthier Approval Processes
- Benefits Agreements
- Archaeological Considerations

OPPORTUNITIES

- Partnerships
- Streamlined Approval Processes
- Access to Growing Labor Force
- Local Knowledge

APPROACHES

- Settlement of Grievances/Claims
- MOUs or other Agreements
- Negotiated Equity (esp. in North)
- Use New Projects to Address Old

COMPETING RESOURCE USE

- Agriculture & Industry Water Needs
- Cottage Water Levels
- White Water Requirements
- Support of Commercial Fisheries
- Recreational Fisheries

- Flood Control
- Municipal Water Supply
- Wildlife Considerations
- Access & Safety Issues
- In most cases utilities engage in IRP, Relicensing, or Water Use Planning.
- BC Hydro is a stellar example more than 20 plans, hundreds of studies leading to more than 200 commitments for action, operating change or study
- Important elements for success include:
 - Defined decision making authority and pathway/process
 - Setting of limits and boundaries
 - Concept of "Tradeoffs"
 - Time
 - Adaptive Management
 - Prioritization of Needs to be Met

Environment / Fisheries

One of the largest areas of emerging requirements for hydropower to address includes the great number of competing fishery and and environmental challenges:

- declining fish stocks
- fish passage, stranding, fragmentation,
- water quality, temperature, hydraulics, hydrology,
- habitat alteration via reduced/ increased flow, reservoir level changes, ramping rates
- invasive species
- nutrient transfer or changes
- interspecies competition

SPECIFIC SCIENCE CHALLENGES:

- Cost effective monitoring / study (productivity, habitat, ecosystem mgmt)
- Innovation for physical or operational solutions
- Precision among multiple causal elements
- Transferability of results to other environments

Environment / Fisheries

PROCESS SOLUTIONS:

- Advocacy for Legislative changes to focus efforts and resource use
- Best Management Practices
- Collaboration with other Users

SCIENCE SOLUTIONS:

- Consideration of Ecosystem Approach
- Adaptive Management
- Indicator Species
- Focused Research for topics like Productivity

Biodiversity / Species at Risk

CHALLENGES:

- Emerging legislation that was not readily contemplated by Existing Hydro
- Limited, court-challengeable provisions for permit or exemption
- Complex sources of the problem not all hydro-related
- Poor history in North America of actually recovering species
- Limited opportunities to actually take action

APPROACHES:

- Offsets / Habitat Banking / Habitat Aggregation
- Prioritization of Sites
- Legislative Advocacy

There is an ongoing challenge to find affordable, fit-for-purpose methodology for assessing risk, and monitoring mitigation results

New Construction

Recent Projects:

- Wuskwatim (Manitoba)
- Revelstoke 5 (BC)
- Niagara Tunnel (Ontario)

Upcoming:

- Muskrat Falls (Labrador)
- Site C (BC)
- Conawapa and Keeyask (Manitoba)
- Little Jackfish, Lower Mattagami, New Post Creek (Ontario)
- Eastmain 1A and Romaine (Quebec)

Other Dimensions of New Projects

- Higher expectation for Benefits Agreements
- First Nations in at the start
- New Canadian Environmental Assessment Act 2012
- Need for Representative, Indicator Methods, Focused Methods
- Uncertain how SARA will be addressed
- Dealing with downsized and re-organized government

SUMMARY

- Existing Hydro now meeting challenges of modern day demands
- Hydro continues to be a sustainable means of generating electricity
- There is a large role science can play in addressing the many environmental challenges facing hydro systems

