ACOUSTIC SIZE SPECTRA OF FISHES:

variation within a hydropower reservoir

Laura Wheeland & George Rose

Email: Laura.Wheeland@mi.mun.ca

Centre for Fisheries Ecosystems Research

Fisheries & Marine Institute of Memorial University of Newfoundland

OUTLINE

- Background & Introduction
- Size spectra in Lac du Bonnet
- Monitoring fish communities
- Conclusion

PROJECT BACKGROUND

Objective Contribute to the development of hydroacoustic methods for ecological monitoring in lakes and reservoirs

http://www.hydro.mb.ca/corporate/facilities/gi_the_winnipeg_river.shtml

WHY A SIZE-BASED APPROACH?

"Body size influences many processes: ranging from individual biological rates up to the structure of food webs"

Blanchard, 2011

SIZE SPECTRA

Ð

Abundanc

"the smaller an animal the commoner it is on the whole"

Elton, 1927

SIZE SPECTRA

- Indicators of community abundance & size structure
- Typically from catch data

Abundance

BENEFITS OF AN ACOUSTIC METHOD

FISH 🕘

LAKE BOT

- Efficient data collection
 - Not size selective
 - Non-invasive

PLANKTON

1. Can we form size spectra from acoustic survey data?

If so,

2. How do spectra characteristics vary among habitats within a reservoir?

LAC DU BONNET

METHODS [Acoustics & ground truthing]

METHODS [Building size spectra]

Single fish targets

4

- Convert acoustic size (TS) to length
 - Fish \approx 5-50 cm, 5 cm bins
 - Normalize for volume sampled •
 - In(length) x In(count)

METHODS [Building size spectra]

HEIGHT – index of overall community abundance Greater height = more fish

Δ

SLOPE – relative abundance by size

steep (more negative): skewed towards small fish shallow (less negative): more equal size distribution

DEFINING HABITAT AREAS: MESOSCALE

Basin 1 Mean depth = 7.4m Max depth = 25m Mud, Sand, Rock

Basin 2 Mean depth = 6.6m Max depth = 13m Mud, Rock 2 Large bays

Basin 3

Mean depth = 9.9m Max depth = 15m Mud, Rock

HEIGHT [Fish community abundance]

- Increased away from channel
- 2011 > 2012

2011

2012

 Decreased across the season

SLOPE [Relative abundance by size]

- Steepest in Basin 2
- Consistent between years (*usually*)
- Flattened out across season (usually)

LDB SPECTRA SUMMARY

Basin 1

- Lowest height
- Shallow slopes

Basin 2

- Moderate height
- Steepest slopes

Basin 3

- Greatest heights
- Slope varied

High flow, low plankton, deep

Low flow, large bays, shallow

Low flow, high plankton, deep

SIZE SPECTRA AS A MONITORING TOOL

HABITAT USE:

Increased **height** = more fish

Increased **slope** = important for juvenile and small fishes

SIZE SPECTRA AS A MONITORING TOOL

LONG TERM MONITORING:

Track changes in slope and height

Rice & Gislason 1996

Size

CONCLUSIONS

- Length-frequency spectra can be derived from acoustic survey data
- Consistency in survey route and timing is important for making comparisons
- Potentially useful tool for efficient, cost effective, and non-invasive monitoring of fish community abundance and structure

ACKNOWLEDGEMENTS

